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1. Introduction. Consider the parabolic equation 

(1) a2 _ a( t) a + b(x, t) a + c(x t)u = d(x, t), < x < 1, 0 < t T, 
a9x2 'x a9t ' x O 

and the initial condition 

(2) u(x, O) =f(x), O < x <1. 

Assume that a(x, t) > 0. It is well known (Douglas [1], Rose [5]) that the Dirichlet 
problem (1), (2), with boundary conditions 

(3) 
u 

O0 
) g() 

< t < T, 4u(l, t) h (t), << 

can be approximated by the solution of the difference equation 

AX2wi. - ainAtwin + binAxWin 
(4) 

+ Crnwin = din i = 1, I - 1, n = 1, , N, 

subject to the initial condition 

(5) Wio = ft, i = ,** I, 

and the boundary conditions 

(Won = gn X 

(6) win n =1, , N. 
Lwin = h 

The subscripts i and n indicate that the function is evaluated at the point (ih, nk) 
where h = 1', k = TN-'. The difference operators in (4) are defined by 

rAI2win = h (w7i,, - 
2win + Wi+l,n), 

h2 

(7) jtin = - (win - W-1) k 

AxWin = 1 (Wi+l,n -Wi_1,n). 

If* u E C4'2([0, 1] X [0, T]), then the error 
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* ,p(x, t) E Ca'd(R) if and only if sp is continuously differentiable a times with respect to x 
and a times with respect to t in the region R. 
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(8) Zin = Uin - Win 

satisfies 

(9) maxI zn =O(h2 + k). 
i,n 

If the conditions (3) are replaced by the Neumann conditions 

(au (0, t) = 9(t) 

(10) 0 < t < TT 
c u 

(1, t) = h(t), 

then the solution win of equations (4) and (5) with boundary conditions 

(Winh 
- Won X n = 1, , N, 

(11) h 

h hn n = 1, , N, 

converges to uin , but the error is 0(h + k) (Douglas [3]). From the analysis, it is 
clear that the h (instead of h2) arises in the first order correctness of the boundary 
conditions. 

Recently, Isaacson [4] has shown that an approximation that is second order 
correct in h can be obtained by replacing conditions (11) with 

(Winr-W_ln = gn X n =N 
2h 

(12) 
WI+1ln - WI-l n= n = 1, , N. 

This result is not entirely pleasing, however, for it requires the assumption that u 
can be extended to satisfy sufficient continuity conditions in [-h, 1 + h] X [0, T]. 

2. Interior Approximations. In the present paper, it is shown that if the centered 
differences in (12) are replaced by one-sided, second order correct differences, the 
error is 0(h2 d- k). This result applies (as do those mentioned above) if the Neumann 
conditions (10) are replaced by the mixed boundary conditions 

-p(t)u(0, t) + q(t) a (0, t) = g(t), 0 < t < T, alx 
(13) 

-r(t)u(l, t) -s(t) au (1 t) = h(t), 0 < t _ T. 

It is necessary to assume that p, q, r, and s are non-negative, and that p + q and 
r + s are bounded away from zero. It is not necessary to assume, as do both Isaacson 
[4] and Rose [6], that one or more of the coefficients p, q, r, s is bounded away from 
zero. 

Assume that the quantities a, b, c, d, p, q, r, and s are bounded, and that 
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u c C4 2([0, 1] X [0, T]). By Taylor's theorem 

'As2u - ainAtuin + b+nAxUin 
(14) 

+ CinUin = din + Ain , i = 1, * , I - 1, n = 1, * , N, 

where Ain I < A(h2 + k) and A is a constant. Similarly, 

r1 (-3 uon + 4uIn - Ul2n) = u + Bn+, 12h xO 
(15)) q n= 1,-N, 

(UI-2,n - 4uI-i,n + 3uIn) = aX + Bn, ~2h Cx X I 

where Bn+ and Bn- are bounded by a constant multiple of h2. For simplicity let 

/\xUOn = n (-3 uon + 4 Uln - U2n) 2h 
(16) 1 

lA x =U2n (UI-2,n - 4UI-n + 3 UIn). 

Then 

(-pnUon + qnAx+Uon = gn + Bon 1 
(17) l-rntUin1 - SnA/rUIn = hn + BIn= 

where Bin < Bh2 and B is a constant. 
Approximate uin by the solution Win of (4) and (5) with boundary conditions 

(18) {I-PnWon + q nAx+Won = gn, n=1, *,N. 
-rnWin - SnAxWin = hn I 

Theii the error (8) satisfies 

(rAxz2in - ainAtZin + binAxZin + CinZin = Ain i=1 , I- 1, 

n= 1 ,N, 

( 19 ) < -pnZon + qnAx Zon = Bon n AT, 

I-nZIn SnAx ZIn = BIn n f = 1 * , N, 

zio=O, i = 1, , I-1. 

In order to bound zin we prove the following lemmas. 
LEMMA 1. Let vin satisfy 

x Vin -aintVin + bin/xvin + CinVin < 0, i=1 
n= 1, ,N, 

(20) PnVon + qnAXVon 0 0-, n = 1, *.-, N, 

-ror - snA[XV1n _ 0, n = 1, * , N, 
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If,for alli= 1, ,I- 1,n= 1, N 

0 < a < ai%fl, 

IJbinI <0 <1 

<< a3 

(21) 10 <-ci,, < y - 

pn , qn , 
' 
1 n Sn _ O, 

pA + qn > 0, 

r, + sn > 07 

where a, j, y are constants, then 

(22) Vin > i= 1, , I - 1,n N. 

Note that vi,, is noni-negative only in the interior of the region. With little diffi- 
culty, one can construct examples for which (22) holds, but for which vo,, < 0 and 
vin < 0, for some n. 

ProoJ. Suppose the lemma is false. Let 

(23) no = mintn l vi, < O for some i, 1 i ? I - 1}. 

Then no > 1. Let io denote a value such that Vio,no is a local negative minimum 
wvith respect to i. There are three cases. 

Case 1: io = 0. Since V0,no < 0, 

(24) 0 > PnoVo,no + qnoAx ?vo,nio _ qfOA.X VO,l0 - 

If qno = 0, then Pno > 0 and it follows that vo,,,o _ 0, contradicting the hypothesis. 
Thus qno > 0, and by (24), 

(25) Al +V,no < 0. 

Therefore, 

A v,0 = 2(VO,no - 2 V1,no + V2,n) 

(26)~ ~ ~~~~~h 

- h L2h (v2 n0 - vo,?n0) -A?Vn 
(26) - I (V2,no - 

h 2 

From the second of conditions (21), 

(27) xvl,nO _-bial/\sVl, xVn- 
Thus, the first of inequalities (20) gives 

(28) -aj,nOAtv1,nO + Cl,novl,,nO 0- 

Since c1,no < 0 and v1,no01 > 0, it follows that vi,,o ? 0. 
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Case 2: io = I. By an argument analogous to that of case 1, it follows that 
VI-1,no - 0. 

Case 3: 1 < io _ I - 1. Here a maximum principle argument is used. From the 
first of inequalities (20), 

(29) (k ajo,no - Cio,no) Vio,nO > b.-2 bit(io-l,no - vio,8o) 
(29)- - - 

+ + 2 biOno)(Vio+lno - Vono + Iaio,no vio0no0u. 

Since every term on the right is non-negative, it follows that Vio0no > 0. This is a 
contradiction. Q.E. D. 

LEMMA 2. Under conditions (21) and the conditions 
i) for some 6, 

(30) 1pn + qn > 6 > 0 and 'rn + Sn ?_ > 0, 
.. ~ ~~ 4 

ii) k < 
4,y 

there exists a funtcion (x, t) such that 

('Ax23in -ainAtrin + binAxtin + Cinrin <_- i= -- - 

n= 1,. ,N, 

(31) -Pnton + qnAx+ On _ -1 n = 1, I.. , N, 

- rn?In - SnAx- rn < n = 1,***,N, 

Pio _0, i = 1 -,I - 

and 

(32) 0 < (x,t) < Mo, 0 _ x < 1 0 < t < T 

where Mo is a constant depending on a, fi, 'y, 3 and T. 
Proof. Let 

(33) t.*(xI t) = ( X 
-x)2. 

Then 

AX in- ainAtri + binAx3i3n + Cinrin = 2 - 2bin(" -xi) 

(34) + Cin(2 -i) < 2 + + 48 i 7 )I 

n= 1,. ,N, 

and 
1 

{ +35= - - q - n = 1, ,N. 
irn l - 8nA =I -irn -Sn 3 

Let ?**(x, t) = eat, a > 0. Then 

A 2 in - ain At in + bin Ax in + Cin in 

(:36) et~ r- 1 (1 - ek +i 
c] > e1 

[- 
Di 

( ,1 - 
ein) 

+ je 
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By Taylor's theorem, 

(37) eok= 1 -k + 2 ek < 1 - k+ 2 

where 0 <k' <I k. Since k < 4 
ay-', 

for 
- 

= 2a-'y it follows that 

(38) Ax * - ain At *+ bj,A, + ci K D** < -eat2- < -- < 0. 

Also, 

3pn;On + qnAx ; On = Pneo < 0 

(39) -rnr On - Sn=x r On -rneatn ? o 

Let M1 and M2 be constants satisfying 

rMl >1 

(40) 
M2 _- 2[1 + Ml(2 + 3+ 4 

Then 

(41) =M1D + M2* 

satisfies the conditions of the lemma. Q. E. D. 
THEOREM 1. If u E C 4'2([O, 1] X [O, T]) is a solution of (1) with initial condition 

(2) and boundary conditions (13), if there exist constants a, 3, 'y, 6 such that 

b <(t < 3 a(x, 0 <x < 1,0 < t < T, 

I b(x, t) I < ,d, O < x < 1, 0 < t < T, 

A-2) O < -c(x, t) < Py, O < x < 1, 0 < t < T, 

p(t), q(t), r(t), s(t) _ 02 O < t < T, 

p(t) + q(t) t a > < tT 

tr(t) + s(t) _ 6 > O, 0 < t < T, 

and if h and k are sufficiently small, then 

(43) max zin I < 1? (h2 + k), n = N 
O<i<I 

where M is a constant that depends on a, 3, ,y, 6, T. 
Proof. Let D(x, t) be a function given by Lemma 2. 
Let 3113 = max (A, B) and let 

AA) ~~~~~~~~n = M3(h2 + k) Sin + Zin 2 i = 02** I 
(44) ~~~ n=0,***,~2N. BVyn = () n3(ha + k)smin -lZin t n = a, te * ,N.d 

By (19) if h alnd k are so small that # < h 1, < aek-1, al'id k < laly-1 , then Vtn and 
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v7,2 satisfy the conditions of Lemma 1. Hence 

fvt+ >0 i .=1, . ,I-1, 
(45)X 

tvin >0 n = 1, , N, 

xvhence 

(46) IZ in I < MoM3(h2 + k), i=1, ,I-1 
n= 1,.N. 

From (19), 

zon = (-pn -h qn)1 [n (z2n - 4 Zin) + Bon] 

(47) = - (2h pn -F 3 qn)1 [qn(z2n -4 Zln) + 2h Bon] 

< 14 [max ( Z1,n I 2 Jz2,n ) + h3], n = 1, ... , N, 

where M4 is a constant. A similar inequality holds for ZIn . The bound (43) follows 
from these inequalities and (46). Q. E. D. 

THEOREM 2. If the coefficients satisfy the conditions of Lemma 1, the difference 
system (4), (5), (18) has a unique solution. 

Proof. Uniqueness is an immediate consequence of Lemma 1. Existence follows 
by the Fredholm alternative. 

3. Generalizations. The restriction c(x, y) < 0 can be removed as follows. Let 
Zn satisfy (19). Then 

(48) = extn 

satisfies (19) with Cin replaced by 

(49) c*n = Cin - aen k n 

with ain replaced by e-hain , and with each of Ain , Bon BIn multiplied by extn. 
If c(x, y) is bounded, X can be chosen large enough so that 

e -ex'1_ 1 
(50) > - sup c(x, y) 

k a 

for all k sufficiently small; in particular for k < 1aTy1. Thus C*n < 0. Therefore, 
Theorem 1 applies to ;in 2 and, a fortiori, to Zin - 

The arguments above can be extended to the problem, considered by Lotkin [5] 
and Isaacson [4], of the parabolic equation (1) in two regions 0 < x < xo and 
xo < x < 1, with conditions (2), (13) and 

ru(xo-, t) = u(xo +, t), 
(51) au (Xo -, t) = K(t) au (xo +? 

t) 
2 

ax ax 

the derivatives in the second equation being replaced by either the centered differ- 
ences (7) or the uncentered difference (16). An appropriate auxiliary function r 
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can be constructed as in the proof of Lemma 2 if t* in equation (33) is replaced by 

.*(X t) = {2(1 ?2: 0 < x -< x 

4. The Non-Linear Problem. The results above can be extended to include the 
non-linear system 

(F(x, t u ux, uxx,u ut) = 0, 0 < x < 1, 0 < t < T 

(G(t, u,ux) = , x = ,0 < t < T 
(52) 

H(t, u, ux) = 1 x = 1) 0 < t <Ty 

( 0( O) =f(x), 0 < x _ 1 

provided F, G, H, and u satisfy certain continuity conditions. Indeed, if 
u c C 42([0, 1] X [0, T]), then 

(F(x, t, u, ux, uxx U Ut) = F(x, t, u, Axu + 3i, Ax2u + 62 , AtU + 63), 

(539) 0 < x <1,0 < T, 
(53) AG(t,u,ux) = G(t,u, Axu + a4), X = 0,0 < t < T 

,H(t, u ux) = H(t, u, Ax-u + 35), X = 0,0 < t < T, 

where, for some constant A, 

61 l, 162 1, 1 64 1, 1 5 1 < Ah2, 
(54) 

a3 ? Ak. 

Let w, an approximation to u, satisfy 

(F(xi tnl y Win,W Axwi,b Y Ax2Win , Atwi) = O, 

i 1 I- 1,n= 1, ,N, 

(55) tG(tn, won , A\xw0n) = 0 n = 1,**N 

H(tn 1 W,n , AW1IN) = 0, n = 1, , N, 

t ~~~~~~~~~wio fiJ, i = , I. 
Suppose that F, G, and H are continuous in [0, 1] X [0, T], and that the deriva- 
tives F3 , F4, F5, F6, G2 , G3 H12, and H3 exist in (0, 1) X (0, T). Then the mean 
value theorem applied to the difference of the respective equations in (53) and (5.5) 
yields 

3-(Uin - win) + F4.[Ax(Uin - wi,) + a1] 

+ Fs.[Ax2(uin -_ Wi') + i2] + Fs [At(Ui,t - Win) + 63] = 0' 

| ~~~~~~~~~~i =1, * , -1 

(56) n = 1, N 

G2 (uOn- w0n) + G3 [Ax+(Uoz- wo,U) + -4] = 0, n = 1, , N, 

H2 (UI,I - WIO) -+ H3 [Ax((UIz W1n) + 35] = 0, n = 1, , N, 

(uio- Wio) 0 i = ( I, 
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where the values of the arguments of F, G, aind H lie between the values of the 
corresponding arguments in (53) and (55). Assume that all derivatives F3, F4, 
F5 , F6, G2, G3, H2, and H3 are bounded, and that the relations 

F5 > O, 

IF6 < - a <02 F5 
(57) - G2, G3, - H2, -H3 ? 0, 

- G2 + G3 ? 6 > 0, 
- H2 - H3 ? a> 0, 

hold throughout [0, 1] X [0, T]. Then it is seen that equations (56) are identical 
with equations (19) (except that the coefficients now depend on u and w as well 
as x and t) and that Theorem 1 holds. Thus the error is O(h2 + k). 
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